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A new noise reduction algorithm HeNLM-LA is proposed. It is a modi�cation of the non-local means

algorithm using Hermite functions expansion of pixel neighborhoods. The �ltering strength parameter is

automatically adjusted proportionally to the local noise level. An algorithm for local noise level estimation

is based on edge modeling; it suppresses high-amplitude edges in the map of local image variance.

1. INTRODUCTION

Image denoising problem is important in many
�elds of image processing. One popular class of
image denoising algorithms is averaging of pixels,
where pixel weights depend upon similarity of
some values characterizing pixel neighborhoods [1],
[2], [3]. The �rst algorithm, known as Non-Local

Means (NLM), calculates weights depending
on Euclidean distance between whole blocks
(patches) around respective pixels. Algorithms [2],
[3] are modi�cations of NLM and allow to
increase the e�ectiveness of noise reduction. They
are based on replacing the patches by feature
vectors characterizing them. The cardinality of
feature vectors is much lower than the number
of pixels in a patch, which allows to reduce the
computational complexity. GFNLM algorithm [3]
is based on features obtained by expansion of the
neighborhood into Gabor functions. In the basis
of LJNLM-UR algorithm [2] lies the Taylor series
expansion of the neighborhood. Coe�cients of
the expansion (known as Local Jets) are de�ned
by derivatives of the Gaussian function. The
advantage of [2] is that the search for similar
patches does not only consider parallel shifts, but
also rotations by an arbitrary angle.

Many image denoising algorithms signi�cantly
depend on a parameter characterizing the noise

level in the image. For εV [4], bilateral �ltering [5]
and Non-Local Means algorithms [1], [2], [3] the
parameter has a meaning of a range (or standard
deviation) of brightness values which can be
considered as noise and suppressed. The natural
approach is to set the parameter proportionally
to the noise standard deviation (assuming that
the mean value of noise is zero). However the
noise level in real images is usually unknown and
requires estimation.

When it is known that the noise level is constant
across the whole image, the typical approach is to
scan the image by a small window, computing the
variance of pixel values in the window and choosing
the estimated noise level as the minimal variance
value among all possible positions of the window.
This approach is based on the assumption that
the image contains a fragment with a size larger
than the window size which has the brightness
close to constant. An example of such approach
is described in [6] where the gradient value is
being averaged in texture-free areas of the image.
Also [6] considers the case when noise level depends
on intensity of the image�such a dependency is
observed when images are obtained from the camera
with gamma correction. The future development
of [6] is described in [7] where a robust probabilistic
noise level estimator depending on brightness and
position on the image is constructed.
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A signi�cant problem of methods based on a
search for the minimum of variance is existence
of edges and textures on images, and absence
of �at areas [8]. These image features lead to
overestimation of noise level in most algorithms,
including the popular estimate based on a median
of high-frequency wavelet coe�cients. In [8] an
approach based on decomposition of image blocks
by principal component analysis is proposed. Here
the minimal eigenvalue of the covariance matrix is
chosen as the noise level estimate. This allows to
obtain the noise estimate even in the areas with
regular texture, if the texture is �predictable� (is
well approximated by the PCA).
In this article a new method of non-local

�ltering, HeNLM, is proposed. It is based on pixel
block expansion in Hermite functions. Inheriting
all advantages of [2] approach, HeNLM better
distinguishes textures due to higher independence
of feature vector components because of the
orthogonality of Hermite functions, and better
description of high-frequency components of the
local neighborhood. The second contribution
of this article is a new method of local noise
estimation giving rise to the locally adaptive
version of the HeNLM-LA algorithm. The proposed
method of noise estimation is algorithmically and
computationally simpler than [7], [8], but unlike [9]
it does not lead to underestimation of the noise
level.

2. LOCAL JETS BASED NON-LOCAL MEANS

In the Non-Local Means algorithm the value
of the output pixel f(x, y) is the weighted sum
of values of source image pixels I(x, y) from the
neighborhood Q:

f(x, y) =
1∑

(ξ,η)∈Q
w

∑
(ξ,η)∈Q

w(x, y, ξ, η)I(x+ ξ, y + η)

(2.1)
These weights w(x, y, ξ, η) depend upon similarity
of blocks v(x, y) around pixels with coordinates
(x, y)

w(x, y, ξ, η) = exp(−‖v(x, y)− v(x+ ξ, y + η)‖22
2ρ2

)

(2.2)
The advantage of this method is a high quality of
the resulting image. However the NLM algorithm

has high computational complexity. Also the
original method does not consider rotation of
blocks when calculating averaging weights [1], i.e.
for pixels lying on one edge, but with di�erent
gradient directions, weights will be small (2.1).
This can lead to poor noise reduction along edges
where the gradient has a di�erent direction in
each pixel of the edge. Also the NLM algorithm is
highly sensitive to noise because the computation
of weights is performed by comparing raw (noisy)
pixel values.

The Local Jets method (algorithms LJNLM-
LR and LJNLM-UR [2]) partially overcomes
the shortcomings of [1]. In LJNLM, weights for
averaging pixels depend upon the distance between
feature vectors characterizing pixel neighborhoods.
Components of the feature vector are values
of Taylor series expansion coe�cients of the
pixel neighborhood, which are determined by
convolutions of the source image I(x, y) with
Gaussian derivatives at di�erent scales:

fσnm = I(x, y) ∗ ( σn+m

1 + n+m

dn+mGσ
dxndym

) (2.3)

The Gaussian function is given by

Gσ(x, y) =
1

2πσ2
e

−(x2+y2)

2σ2 (2.4)

The multiplier σn+m is introduced in (2.3) for
equal �lter response to same textures at di�erent
scales [10]. In other words, if σ and the scale
of I(x, y) are increased synchronously, the values
in (2.3) will not change. The denominator 1+n+m
represents the number of derivatives of order n+m
and excludes the situation when the contribution of
high-order derivatives leads to ignoring of low-order
derivatives.

An advantage of the method is ease of obtaining
features that are invariant to rotation. The features
are rotated to the coordinate system (g, τ), where g
is the gradient in pixel (x, y) and τ is perpendicular
to g (�g. 1).
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Fig. 1: Coordinate system (g, τ).

The feature vector characterizing the
neighborhood of pixel is de�ned as follows:

P = {f̃σnm;n+m ≤ r;σ ∈ S} (2.5)

where f̃σnm is a feature in the coordinate system
(g, τ), r is the maximal order of derivatives, S is a
set of di�erent scales [10].

3. HERMITE FUNCTIONS

Hermite functions are de�ned as [12]:

ψn(x) =
1

cn
e
x2

2
dn(e−x

2
)

dxn
=

(−1)n

cn
Hn(x)e

−x2
2 ,

where cn =

√√
π2nn!

Hn(x) = (−1)nd
ne−x

2

dxn
ex

2
is a

Hermite polynomial(3.1)

They form the complete orthonormal system in
L2(−∞,+∞) [11]:

+∞∫
−∞

ψn(x)ψm(x)dx = δnm (3.2)

We de�ne multiscale Hermite functions as
follows:

ψσn =
1

σ
ψn(

x

σ
) (3.3)

The multiplier 1
σ in (3.3) provides that ψσn,

unlike (3.2), are not normalized to one, but
normalized by the �lter response�see the comment

after (2.4). Hermite functions (3.3) satisfy the
di�erential equation [11]:

ψσn + (σ2(2n+ 1)− x2)ψσn(x) = 0 (3.4)

Some of Hermite functions and Gaussian function
derivatives are shown in �g. 2. It is seen that the
localization (support) area of Hermite functions and
Gaussian derivatives is roughly same but Hermite
functions much better represent peripheral parts of
the area, because their amplitudes stay roughly the
same there.

Fig. 2: Hermite functions (on the left) and Gaussian

function derivatives (on the right).

We de�ne 2D Hermite functions [12] as:

ψσnm(x, y) = ψσn(x)ψ
σ
m(y) (3.5)

4. HERMITE FUNCTIONS BASED
NON-LOCAL MEANS

We propose a modi�cation of the LJNLM-LR
method using the expansion into Hermite functions
instead of Gaussian derivatives. Now elements of
the feature vector are convolutions of the source
image u with Hermite functions:

uσnm = u ∗ ψσnm (4.1)

As well as in LJNLM-LR method, obtained
features are converted in the coordinate system
(g, τ). We derive an explicit expression. Consider
two coordinate systems related by a rotation:(

ξ
η

)
= R

(
x
y

)
, R =

(
cosϑ sinϑ
− sinϑ cosϑ

)
(4.2)

Then the di�erential operator in a new
coordinate system can be expressed through
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the linear combination of operators in the old
coordinate system:

d

dξi
=
∑
j=1,2

Rij
d

dxj
, where

i = 1, 2; ξ1 = ξ; ξ2 = η

j = 1, 2; x1 = x; x2 = y

(4.3)
The expression for Gaussian derivatives takes the

form:

dn+mGσ
dξn1 dξ

m
2

=

∑
j=1,2

R1j
d

dxj

n∑
j=1,2

R2j
d

dxj

m

Gσ

(4.4)
The Hermite function is a product of a Gaussian

derivative, a radially symmetric multiplier e
(x2+y2)

2 ,
and a coe�cient cj . By substitution of (3.1)
into (3.3) and (3.3) into (3.5), considering (4.4),
removing brackets around Gaussian function
derivatives and considering the form of the matrix
R (4.2), it can be obtained that:

cncmψ
σ
nm =

n+m∑
j=0

ajcjcn+m−jψ
σ
j,n+m−j ,

aj =

min(j,n)∑
k=max(0,j−m)

(−1)j−k (cosϑ)m−j+2k ·

· (sinϑ)n+j−2k CknCj−kn

where Ckn =
n!

k!(n− k!)
(4.5)

We note that the expression for rotation of vector
components for the Local Jets method is the same,
but coe�cients cj should be set equal to 1.
By choosing the new basis (ξ, η) so that the ξ axis

direction matches the brightness gradient of the

image ~g =
(
I(x, y) ∗ dGσdx , I(x, y) ∗

dGσ
dy

)T
it can be

obtained that in (4.2) and (4.5) ~g
|~g| = (cosϑ, sinϑ)T .

The use of Hermite functions instead of
Gaussian derivatives better characterizes pixel
neighborhoods, because their orthogonality
means less dependence between feature vector
components hσnm (4.1) and, accordingly, their
greater signi�cance. Also the e�ective localization
region is expanded and, accordingly, the peripheral
data of the local neighborhood and high-frequency
components are better represented.

5. NOISE LEVEL ESTIMATION FOR
AUTOMATIC SELECTION OF THE

FILTERING PARAMETER

Consider the model image of an ideal step edge
with additive Gaussian noise:

I(x, y) =

{
a+ ν(x, y), x > 0

−a+ ν(x, y), x < 0,

〈ν(x, y) = 0〉, 〈ν2(x, y)〉 = β2 (5.1)

where parameter a characterizes the brightness of
the image and ν(x, y) is the additive noise. We will
perform averaging with a Gaussian window, i.e.

〈f(x, y)〉 =
+∞∫
−∞

+∞∫
−∞

f(x− ξ, y− η) 1

2πσ2
e−

ξ2+η2

2σ2 dξdη

(5.2)
We compute the local variance of the image (5.1):

D(x, y) = 〈I2(x, y)〉 − 〈I(x, y)〉2 (5.3)

Using averaging (5.2) and taking into account
that the noise mean is zero, it can be obtained that:

〈I(x, y)〉 = 1√
2πσ

a x∫
−∞

e
−ξ2

2σ2 dξ − a
+∞∫
x

e
−ξ2

2σ2 dξ +

+

+∞∫
−∞

ν(ξ)e
−ξ2

2σ2 dξ

 = a · erf( x√
2σ

) (5.4)

By analogy:

〈I2(x, y)〉 = 1√
2πσ

a2 +∞∫
−∞

e
−ξ2

2σ2 dξ +

+2a

x∫
−∞

ν(ξ)e
−ξ2

2σ2 dξ − 2a

+∞∫
x

ν(ξ)e
−ξ2

2σ2 dξ

+

+∞∫
−∞

ν(ξ)e
−ξ2

2σ2 dξ

 = a2 + β2 (5.5)

Here we extensively interpret the equality of the
noise mean to zero (second and third integrals
in brackets) by assuming that the integral of the
noise component is equal to zero in a part of
the neighborhood with Gaussian weights, or in
any neighborhood with any weights if the area
with nonzero weights is signi�cantly wider than
the noise correlation radius. If noise correlation
radius is signi�cantly smaller than σ and the noise
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distribution statistics is symmetric, this condition
is satis�ed. Then by substituting (5.4) and (5.5)
into (5.3) the following expression for the local
variance can be obtained:

Dσ(x, y) = β2 + a2(1− erf2( x√
2σ

)) (5.6)

It can be noted that the expression is not equal
to the value of variance, but it contains an additive
term which becomes signi�cant near the edge
(�g. 4).
On the other hand, edges in the image can be

found using absolute brightness gradient, as in the
Canny method [13]. For the model image (5.1)
the gradient can be calculated as convolution with
a Gaussian derivative, and again, assuming the
equality of noise mean to zero, it follows that:

gσ(x, y) =
1√
2πσ

+∞∫
−∞

I(x− ξ) ξ
σ2
e

−ξ2

2σ2 dξ =

= − 1√
2πσ

2ae
−x2
xσ2 +

+∞∫
−∞

ν(ξ)
ξ

σ2
e

−ξ2

2σ2 dξ

 =

=

√
2a√
πσ

e
−x2
2σ2 (5.7)

and the square of gradient modulus:

g2σ(x, y) =
2a2

πσ2
e

−x2
σ2 =

2a2

πσ2
Fσ(x),

where Fσ(x) = e
−x2
σ2 (5.8)

Comparing expressions (5.6) and (5.8) we can see
that far from the edge the gradient is equal to zero
and the variance is equal to noise variance. Near the
edge both functions experience �bumps� of similar
shape: the expression from (5.6) has a shape similar
to the Gaussian (5.8) with the appropriate choice
of parameter σ0 (�g. 3).

Fig. 3: Graph of functions f(x) = 1− erf2( x√
2σ

)

(wider), σ = 1, F1(x) (narrower), F1.27(x) (markers)

and relative error of functions f(x) and F1.27(x)∣∣∣ f(x)−F1.27(x)
f(x)

∣∣∣ (below)
Consider the minimization problem:

σ0 = argmin
σ

 +∞∫
−∞

(Fσ0(x)− f(x))2dx

1/2

(5.9)

Its numerical solution has provided that the
minimum is reached for σ0 ≈ 1.27σ. At the same
time, the di�erence norm is equal to 0.009. So, the
expression (5.6) for variance can be replaced with
the approximation:

Dσ(x, y) = β2 + a2Gσ0(x), σ0 ≈ 1.27σ (5.10)

Comparing (5.10) and (5.8) it can be seen that
if the gradient modulus is calculated with a larger
value σ0 ≈ 1.27σ, the expression (5.10) can be
written as:

Dσ(x, y) = β2 +
πσ20
2
g2σ0 , (5.11)

And the noise level can be evaluated as

β2(x, y) = Dσ(x, y)−
πσ20
2
g2σ0(x, y), σ0 ≈ 1.27σ

(5.12)
It is important to emphasize that

expressions (5.6), (5.8) and (5.10) signi�cantly
re�ect the form of the model image (5.1) due to
spatially-dependent functions (Gaussian or error
function), but the right part of expression (5.12)
contains locally calculated (through convolutions)
characteristics: the local variance Dσ(x, y) and the
square of the gradient modulus g2σ0(x, y). The noise
variance is a linear combination of these values
computed locally for each pixel with constant
coe�cients. Therefore results obtained for the
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model image can be applied to any image and
obtained noise level estimates can be considered
as local, depending on the coordinates. We also
note that in the numerical implementation it is
possible to calculate the gradient modulus with the
same value of σ as the image variance (5.2), (5.3).
However in this case before the substitution of the
gradient modulus in (5.12) it will be necessary to
blur it by convolution with a Gaussian function
with σ3 =

√
σ20 − σ2 ≈ σ

√
1.272 − 1 = 0.783σ.

6. RESULTS

The results of applying the noise estimation
algorithm to the digital image described by
formula (5.1) are shown in �g. 4. It can be seen
that the bright white stripe corresponding to the
edge in the local variance image (4ñ) is absent in
the image (4d). By averaging in the entire area
of the image (4d) the mean estimated noise level
of β̂ = 0.13 was obtained with original simulated
noise level being β = 0.14.

Fig. 4: Result of noise level estimation on the model

image: source image; source image with Gaussian noise

added; variance of the noisy image; result of noise

estimation.

The results of processing of real images are shown
in �g. 5. Gaussian noise was added to images Lena
è Barbara.

It can be seen that in the �rst image Lena

with high level of added noise the contours of
objects are clearly visible in the second column and
completely absent in the third one. With small noise
(in the next row) the area with a complex texture
(feathers on the hat) was estimated as noise and is
shown with a brighter color in the third column.
Edges of the objects are partially visible, often
with darker color, i.e. the obtained level of noise
is underestimated. We will comment on this later.
In the third row (image Barbara) with low noise
level it is clearly visible that textured areas (pants,
scarf, tablecloth) are shown with a brighter color,
i.e. the �ne texture was recognized by the algorithm
as noise, which does not contradict with the logic
and the goal of the algorithm. The estimated level of
noise generally corresponds to the added noise, see
�g. 6. Our studies found that the optimal �ltering
parameter ρ2 (the one that maximizes PSNR) and
the mean estimated level of noise depend linearly.
This is no linear dependence, however, at low noise
levels, because textured areas in this case provide
a larger contribution to the variance than the noise
itself.

Fig. 5: Results of local noise estimation on real

images. The �rst column is the source noisy image. The

second column is the local variance (5.2)�(5.3), The

third column is noise level estimate given by (5.12). A

Gaussian noise was added with β = 0.4 for the �rst

image and β = 0.12 for the second and third images.
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Fig. 6: Noise level estimate as a function of the

ground-truth added noise level for image Barbara.

Let's go back to the previously mentioned
problem of underestimation of the noise level along
the edges. Presumably this e�ect happens because
real edges do not match the model of the ideal
step edge (5.1). To illustrate this, a set of circles
with a variable blur is presented in �g. 7. It can
be seen that the described e�ect does not exist on
sharp step edges, but as the edge blurs this e�ect
appears and intensi�es. Thus, in the future it will
be necessary to develop the proposed method to
improve the edge model (5.1) and the correcting
formula (5.12). Presumably this approach will
have to include estimation of the edge width (or
scale [14]). This hypothesis also partially explains
reduction of underestimation when the noise level
increases: high noise level leads to perception that
edges are blurred; the noise conceals blurriness.

Fig. 7: Noise estimation results on the ideal (top) and

non-ideal (bottom) edge.

In �g. 8, �ltering results are presented for
image Lena with three di�erent algorithms:
NLM, LJNLM-LR and the proposed HeNLM-
LA algorithm. The window size was set to
21 × 21, the patch size for the NLM algorithm
was set to 7 × 7. The maximal function order

for neighborhood expansion in LJNLM-LR and
HeNLM-LA algorithms was set to 4. The obtained
noise level map was additionally smoothed by the
Gaussian �lter with σ2 = 4σ because the resulting
β(x, y) is too grainy with a correlation radius on
the order of σ, as a result of reduction of high-
frequency components in initially uncorrelated
(white) noise. The source image was corrupted
with a Gaussian noise with β = 0.045. It can be
seen that LJNLM-LR and HeNLM-LA algorithms
better reduce noise in �ne-textured areas (feathers
in the hat, eyes). The NLM algorithm better
reduces noise in �at areas (cheeks). The PSNR
between the source noise-free and the �ltered
image is better for the proposed method: 37.5
against 37.44 and 36.84 dB for LJNLM-LR and
NLM methods respectively.

Fig. 8: From left to right and top to bottom: the noisy

image and the �ltering results with NLM, LJNLM-LR

and HeNLM-LA.
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Fig. 9: Result of the proposed algorithm with

irregular noise: noisy image, estimated noise level map,

image �ltered with a high parameter, with a low

parameter, with a locally adaptive parameter.

In �g. 9 the result of a locally adaptive algorithm
is shown in comparison with a �xed-parameter
�ltering. Here the noise level signi�cantly di�ers
for various image fragments. The source image was
corrupted by a Gaussian noise with β1 = 0.045 for
bright areas and β2 = 0.14 for dark areas. In �g. 9b
the obtained noise estimate is shown. High constant
parameter ρ = 2.5 ·β2 leads to blurring of tile edges
in upper left area of the image (�g. 9c), while low
parameter ρ = 2.5 · β1 leads to insu�cient noise
removal in the shadow area (�g. 9d). Our adaptive
choice of the parameter ρ = 2.5 · β̂(x, y) leads to
a satisfactory quality of noise removal across the
whole image.
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