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ABSTRACT
The problem of interpolation of gaps in audio signals is important for the restoration of degraded recordings.
Following the parametric approach over a sinusoidal model recently suggested in JAES by Lagrange et al.,
this paper proposes an extension to this interpolation algorithm by considering the interpolation of a noisy
component in a “sinusoidal+noise” signal model. Additionally, a new interpolator for sinusoidal components
is presented and evaluated. The new interpolation algorithm is suitable for a wider range of audio recordings
than just the interpolation of a sinusoidal signal component.

1. INTRODUCTION

The problem of interpolation of time-frequency re-
gions is important for the restoration of audio data
degraded by interfering events of significant dura-
tion. Typical time-domain interpolation methods
use linear predictive coding (LPC) to predict the
signal “into the gap” from each side of the gap [1],
[2]. Two (forward and backward) extrapolated pre-
dictions are crossfaded to form a smooth transition.
LPC extrapolation is able to model a mixture of si-
nusoids with fixed frequencies on each side of the

gap. However no linking of such sinusoids is at-
tempted. Also, LPC extrapolation is not using joint
information from both sides of the gap to recover a
realistic amplitude envelope of the interpolated sig-
nal.

An improved time-domain method called LSAR
(least-squares autoregressive interpolation) is pro-
posed in [3]. It is based on LPC, but uses joint infor-
mation from both sides of the gap, and also contains
the Expectation Maximization algorithm to jointly
optimize AR coefficients and the interpolated audio
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signal.

A well-known problem with algorithms based on
LPC is over-smoothing of the interpolated signal due
to lack of proper excitation [4]. This happens be-
cause LPC only models a stationary tonal part of the
signal. Some solutions are suggested in [4] and [5]:
the excitation signal in the gap is either synthesized
as random noise [5] or copied from the surrounding
section of the audio signal [4]. These improvements
allow for very realistic synthesis of both tonal and
noisy signal components — but only when station-
arity assumption holds.

However when the signal departs from stationarity,
most time-domain interpolation methods are facing
difficulties, especially when the length of the inter-
polated gap is above 20 ms [3]. More successful
are the algorithms considering a 2-dimensional time-
frequency structure of a signal (Fig. 1). They are
referred to as spectral interpolation algorithms.

Fig. 1: 500-ms gap in the sustained vocal note.

Simple algorithms for spectral interpolation include
multiband interpolation of subsampled spectrogram
data. In [3], an algorithm is presented that works
on the STFT (short-time Fourier transform) data
and independently interpolates each frequency chan-
nel of spectral coefficients using a LSAR interpola-
tor. Such simple algorithms work reasonably well for
stationary tonal signals, but fail to correctly resolve
pitch changes or reconstruct noisy sections of audio
data in the interpolated segment (Fig. 2).

A parametric approach has been suggested by Ma-
her in [6]. It uses a McAulay–Quatieri sinusoidal

Fig. 2: Interpolation by a multiband LSAR algo-
rithm.

model [7] to identify tonal components in the signal.
After tonal components on both sides of the gap are
matched, a polynomial extrapolation1 of their tra-
jectories inside the gap is performed.

Recently, an improvement of Maher’s method has
been published by Lagrange et al. in [8]. This new
method is able to correctly interpolate pitch varia-
tions in the audio signal, such as vibrato or pitch
slide effects, by using LPC (linear predictive) ex-
trapolation of sinusoidal trajectories (Fig. 3). While
being a significant improvement, this approach still
only models the tonal part of the signal and does
not address the problem of interpolation of noisy
segments.

In this paper, an extension to the Lagrange’s method
is proposed, adding the interpolation of the noisy
residual signal. A new interpolator for partials tra-
jectories is also suggested to replace the LPC method
of [8].

The proposed improvements make the interpolation
algorithm suitable for a wider range of audio record-
ings than just the interpolation of a sinusoidal signal
component, because the improved algorithm is able
to interpolate noisy and mixed-content signals.

However it should be mentioned that the presented
algorithm still relies on smooth changes of signal pa-
rameters inside the interpolated interval. It is unable

1Throughout this paper, “interpolation” means filling in
missing data using information from the left and right sides
of the gap. Similarly, “extrapolation” means filling in missing
data using information from only one side of the gap.
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to recover a transient that is completely missing, nor
is it able to interpolate a signal which behaves unpre-
dictably. A different class of gap filling algorithms,
based on a waveform substitution, is able to recover
repeating transients using the search of similar ex-
amples in the audio recording. However such algo-
rithms assume the repeatable nature of audio signals
and may have problems with smooth blending of a
recovered section into the gap.

2. SINUSOIDAL INTERPOLATION

Our interpolation of a sinusoidal signal component
closely follows Lagrange’s method [8].

The first step is the identification of tonal signal
components at both sides of the region (gap) to be
interpolated. The signal is modeled as a sum of
time-varying sinusoidal components (“partials”), as
described by McAulay–Quatieri in [7].

s(t) =

K∑
k=1

Pk(t) =

K∑
k=1

Ak(t) cos (φk(t)) (1)

φk(t) = φk(0) + 2π

∫ t

0

fk(u) du (2)

Each partial Pk(n) detected from the STFT spec-
trum is represented by its amplitude envelope Ak(n),
frequency fk(n) and phase φk(n) functions in time:

Pk(n) = {Ak(n), fk(n), φk(n)} (3)

Here k is the index of the partial, and n is the dis-
crete time index.

2.1. LPC Method

When the partials are identified on each side of the
gap and their parameters (trajectories) are detected,
the second step comprises extrapolation (prediction)
of the trajectory of each partial inside the gap. In [8],
the Burg method is used for estimation of LPC
model parameters from a limited number of sam-
ples. When LPC parameters are evaluated, linear
predictive modeling of the amplitude envelope and
frequency trajectory is carried out inside the gap for
all partials from the left and right sides of the gap.

The third step is to match partials extrapolated from
left and right sides of the gap. This matching is

Fig. 3: Interpolation of partials by the Lagrange
method.

based on evaluation of the difference in predicted
frequency and amplitude trajectories of each pair of
“left” and “right” partials. Some partials with large
differences are allowed to remain unmatched (for ex-
ample, some partials could have completely faded
out during the gap, and they do not have a match
on the right side of the gap).

Once the pairs of matching partials are identified,
their trajectories are interpolated inside the gap by
means of a crossfaded forward/backward LPC ex-
trapolation, and the final synthesis of partials is per-
formed from these interpolated trajectories (Fig. 3).

Our contribution to the method is the considera-
tion of other, more powerful methods of extrapo-
lation/interpolation of partials trajectories. While
the crossfaded forward and backward LPC predic-
tion suggested in [8] produces reasonably good re-
sults, it considers the left and right sides of every
partial separately. As a result, the extrapolation of
a partial from one side of the gap does not meet the
known trajectory of that partial on the other side of
the gap. This problem has been alleviated by cross-
fading in [8].

2.2. LSAR Method

A method using a LPC model and utilizing informa-
tion from both sides of the gap is described in [3]; it is
known as LSAR (least-squares autoregressive) inter-
polation. This method not only minimizes the LPC
prediction error inside the gap, but also ensures that
the extrapolated trajectory meets the correspond-
ing matching trajectory at the other side of the gap.
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This is done by a joint minimization of LPC predic-
tion error inside the gap and on both sides of the
gap.

This method produces more consistent interpolation
of trajectories, but it is still sensitive to inaccuracies
in estimated partials trajectories.

2.3. DFT Method

Another interpolation method recently proposed by
Meisinger et al. in [9], simplifies the LPC model
by removing exponential envelope terms from the
model, which yields a ”sum of constant-amplitude
sinusoids” model. An effective iterative algorithm
exists for fitting this model to the known trajectory
of a partial on both sides of the gap simultaneously.
Here is a brief review of the method.

The known signal samples f(n) are approximated by
the parametric model:

g(n) =
∑
i∈Ω

ciψi(n) (4)

Here Ω describes the set of used basis functions
ψi(n), and ci are expansion coefficients. The sup-
port area L for basis functions consists of two ar-
eas: A – where the signal samples are known, and
B – where signal samples are to be estimated (gap);
L = A ∪ B.

To determine optimal expansion coefficients ci, the
weighted error energy between f(n) and g(n) is eval-
uated at the support area A:

EA =
∑
n∈L

w(n) · (f(n)− g(n))
2

(5)

Here the weighting function w(n) is non-zero only
in A, and it tries to emphasize the samples that are
more important for extrapolation — usually those
close to the edges of area A, as given by some prox-
imity metric ρ.

w(n) =

{
ρ(n), n ∈ A
0, n ∈ B (6)

The iterative process of finding expansion coeffi-
cients ci is derived in [9]. On each iteration, it mod-
ifies only one expansion coefficient — the one that
minimizes the weighted error energy EA.

If basis functions ψi(n) are selected to be basis func-
tions of the DFT (discrete Fourier transform) on
the segment L, then an efficient computational algo-
rithm exists for the expansion. Such a set of ψi(n)
is also a good fit for our needs, because sinusoidal
basis functions of the DFT can compactly represent
periodic changes in partials trajectories (such as vi-
brato and tremolo). Due to the arbitrary shape of
the allowed support area A for the known data, the
method can be used both for extrapolation of single-
ended partials into the gap as well as interpolation
of matched pairs of partials inside the gap.

In our algorithm, we remove a linear trend (including
DC offset) from the detected trajectories of partials
before interpolation/extrapolation. After that, we
are running the DFT-based algorithm with just 2
iterations to produce a good approximation to fre-
quency and amplitude trajectories (Fig. 4). Using
more than 2 iterations over-fits the model to possibly
inaccurate and noisy estimated partials trajectories,
which is undesirable.

Fig. 4: Interpolation of partials by DFT method.

2.4. Joint Interpolation of Multiple Partials

Often partials belonging to the same musical instru-
ment have similar pitch variations over time. When
being interpolated independently, their trajectories
can diverge quite significantly during the interpo-
lated gap. Harmonic relationships of the partials
are destroyed and the synthesized sound becomes
unnatural (Fig. 4). So, when the signal is known
to be mainly harmonic, a joint interpolation of fre-
quency trajectories is proposed (Fig. 5). We do not
develop any automatic algorithm here to detect such
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situations, leaving the decision on signal harmonic-
ity up to the user.

It can be observed that frequencies of partials in har-
monic relationship with each other are represented
by parallel trajectories on a log-scale time-frequency
plot. So, it is sufficient to only interpolate one par-
tial in a log frequency scale and then its frequency-
shifted trajectory would fit other partials. To im-
prove robustness to possibly noisy and inaccurate
trajectory data, we are averaging frequency trajec-
tories of all reliably detected partials. Then the in-
terpolation is carried out for the averaged frequency
trajectory.

Fig. 5: Joint interpolation of partials by the pro-
posed method.

Once the interpolated trajectory is calculated, we
are shifting it on a log-frequency scale to fit other
partials that took part in averaging. The inter-
polated averaged trajectory may not perfectly fit
some of these individual partials due to non-strict
harmonic relationships or noisy data. To improve
smoothness at junctions of interpolated trajectories
in zone B with original trajectories in zoneA, a short
crossfade with LPC-predicted trajectories can be ap-
plied near the ends of the gap (Fig. 6), since LPC-
predicted trajectories join the original data very
smoothly. Thus, we are using both LPC and DFT
interpolation algorithms for trajectories of partials.

3. RESIDUAL INTERPOLATION

After the sinusoidal part of the audio is modeled
and interpolated, there is a need to interpolate the
rest of the audio data that was not represented by

Zone A Zone AZone Bf

t

DFTLPC LPC

Fig. 6: Weighting windows for crossfading trajecto-
ries interpolated by LPC and DFT.

the sinusoidal model. Such a residual corresponds
to signal noise and minor harmonics not resolved by
the sinusoidal modeling. For most real-world music
signals, this residual component carries a significant
part of the total signal energy, and omitting it from
the synthesized gap leads to a significant drop in
the overall loudness and change in the overall timbre
(Fig. 5).

The first step is obtaining the noisy residual in
zone A, where the signal is known. This is achieved
by subtracting the synthesized partials from the au-
dio signal on both sides of the gap (Fig. 7).

Fig. 7: Residual signal after subtraction of synthe-
sized partials.

The second step is interpolation of the noisy residual
into the gap. This is done by a multiband LSAR in-
terpolator working on STFT coefficients of the resid-
ual signal.

Our filter bank is a Short-Time Fourier Transform
with a 50-ms Hann window and a hop size being 1/8-
th of the window size. Just as with a sinusoidal mod-
eling, STFT window duration can be chosen higher
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for stationary audio material or lower for quickly
changing material, but we are leaving this decision
up to the user. The synthesis filter bank is quite
similar: inverse STFT with 50-ms Hann windows.

Our implementation of a multiband LSAR method
is working on STFT coefficients with LPC order 20,
which covers approximately 125 ms of audio signal
at each side of the gap (this is invariant of the sam-
pling rate). Linear prediction coefficients are cal-
culated using Levinson-Durbin recursion from a 38-
point (240-ms) autocorrelation window. Since the
autocorrelation window at least partially covers the
gap, the resulting LPC coefficients are biased. A
3-iteration Expectation Maximization algorithm is
run to reduce the bias and improve the quality of
LSAR interpolation (see [3] for details).

In [5], a drawback of LSAR interpolation is de-
scribed: in long interpolated gaps, the LSAR in-
terpolator tends to underestimate the energy of the
signal due to lack of proper excitation (Fig. 8).

Fig. 8: Interpolation of the residual signal by a
multiband LSAR method.

To address this problem, we suggest extraction of a
linear trend (in time) from the magnitude envelope
of the interpolated signal in every frequency band.
Such a trend is calculated using signal magnitudes
in zone A (see Fig. 10). Then, LSAR interpolation
is only performed on a zero-mean residual signal af-
ter subtraction of a linear trend. Adding this trend
back to the signal after LSAR interpolation ensures
that the overall energy of the interpolated signal is
preserved (compare Fig. 8 and 9).

Another problem with the LSAR algorithm is the

performance of a multiband LSAR on noisy signals:
the method fails to model inter-band correlations
of STFT coefficients. Since STFT is a windowed
transform, there exists a correlation (also known as
“vertical phase coherence”) between coefficients in
neighboring frequency bins, both for noisy and sinu-
soidal signals. Interpolating frequency bands inde-
pendently does not preserve this correlation, which
results in loss of power and “phasiness” artifact for
both noise and sinusoids.

To address the problem of vertical phase coher-
ence, we suggest explicitly identifying residual fre-
quency bands containing mostly noise, and substi-
tuting (properly correlated) STFT coefficients of a
white noise in the synthesized signal at these fre-
quency bands (Fig. 9). The power of noise is scaled
according to the signal energy at the sides of the
gap.

Fig. 9: Interpolation of the residual signal by the
proposed method.

The proposed way for identifying regions of such
noise substitution is based on comparing energy of
LSAR interpolation (without linear trend extrac-
tion) to the level of the linear trend. Where the
LSAR interpolation drops below the level of the
linear trend, the STFT coefficients of white noise
should be mixed in to compensate for the level drop
(Fig. 10). This also improves vertical phase coher-
ence, because phases of a substituted white noise are
properly correlated.

After the residual signal is interpolated, it is mixed
with interpolated sinusoidal components to produce
the final result of the algorithm (Fig. 11)
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Linear trend

LSAR result

Zone A signal

Zone A signal

Zone BA

t

Noise substitution

Fig. 10: Detection of regions for noise substitution.

Fig. 11: Combining the interpolated residual with
sinusoidal components.

4. EVALUATION AND CONCLUSION

We have evaluated the suggested algorithm on dif-
ferent synthetic and real-world samples.

It has been found that for gaps longer than 10–20
ms, the time-domain LSAR method usually cannot
properly interpolate the signal and produces a drop
in level [10].

A multiband version of LSAR works for gaps up to
100 ms if the signals are mostly tonal and stationary.
If the signal contains significant noisy components,
a multiband LSAR results in a level drop as well.

The sinusoidal interpolation algorithm of La-
grange [8] works well in connecting sinusoidal com-
ponents for longer gaps, depending on the complex-
ity of the harmonic structure. However it is only
sufficient for instruments where the tonal part dom-
inates and no significant noise is present.

The algorithm proposed in this paper provides a
higher quality of interpolation on most samples and
gap sizes because of its improved robustness of par-
tials connection and synthesis of a noisy residual.

In most cases, the version with joint interpolation
of harmonics has been preferred to independent in-
terpolation of harmonics, because it produces less
spurious “detuning” of harmonics.

Additional examples of interpolation can be seen be-
low in Fig. 12–17. More examples of interpolated
spectrograms, audio samples and demo software can
be obtained in [10].

Fig. 12: 200-ms gap in the synthetic sliding tone.

Fig. 13: Interpolated partials.
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Fig. 14: Original noisy guitar chord.

Fig. 15: 200-ms gap in the guitar chord.
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