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ABSTRACT

The noise that lavalier microphones produce when rubbing against
clothing (typically referred to as rustle) can be extremely diffi-
cult to automatically remove because it is highly non-stationary
and overlaps with speech in both time and frequency. Recent
breakthroughs in deep neural networks have led to novel techni-
ques for separating speech from non-stationary background noise.
In this paper, we apply neural network speech separation techni-
ques to remove rustle noise, and quantitatively compare multiple
deep network architectures and input spectral resolutions. We find
the best performance using bidirectional recurrent networks and
spectral resolution of around 20 Hz. Furthermore, we propose an
ambience preservation post-processing step to minimize potential
gating artifacts during pauses in speech.

1. INTRODUCTION

The lavalier microphone (lav mic) is an invaluable tool for the au-
dio engineer. By inconspicuously attaching near the mouth it al-
lows the person wearing the microphone to move freely, minimi-
zes visual distractions, and also helps to reduce reverberation and
noise from the recording environment. Because lav mics are ty-
pically attached to a subjects wardrobe, they can sometimes rub
against clothing creating an auditory disturbance often described
as rustle. Lav mic rustle can overlap with speech in both time and
frequency and vary in unpredictable ways based on how the person
wearing the microphone moves their body. This makes developing
an algorithm to automatically detect and remove rustle extremely
challenging.

Traditional techniques for single-channel speech enhance-
ment, e.g., spectral subtraction [1], work well for stationary back-
ground noise (e.g., air conditioner hum), but struggle in the pre-
sence of non-stationary disturbances, such as lav mic rustle. Re-
cently, source separation approaches have achieved success in se-
parating speech from complex non-stationary background noise,
such as music, weather, or even other speech [2]. These techni-
ques typically operate on a time-frequency representation of the
signal, e.g., the spectrogram, and often take a supervised learning
approach where a collection of clean speech and isolated noise
samples are used to learn a model. Once trained, this model can
obtain separated speech and noise signals when given noisy speech
as input.

Time-frequency masking is one approach to single-channel
speech separation which estimates the amount of speech and noise
present in each spectrogram bin (i.e., the mask). This mask is then
used as a time-varying filter to separate speech from noise. Re-
cent advances in deep neural networks have drastically improved
the ability to learn the nonlinear mapping function necessary to

estimate time-frequency masks from noisy speech. The approa-
ches of [3, 4, 5, 6] use feedforward network architectures where
the mask for a frame of audio is predicted using input features
from several surrounding frames. In this architecture, increasing
the amount of temporal context requires increasing the dimension
of the network input, which extends the size of the entire network.
This increases the risk of overfitting and the resources necessary
to train and deploy the network.

For this reason, recurrent architectures have demonstrated
success on several sequential prediction tasks [7] like language
translation, video captioning, speech recognition, and speech/noise
separation. Recurrent architectures save an internal hidden state
between time steps, and the appropriate context for a problem
at hand can be learned from data. However, to avoid the vanis-
hing/exploding gradient problem, gated architectures, such as the
long short-term memory (LSTM) [8], must be used. Additio-
nally, [9] showed improved performance on a speech noise se-
paration task using a bidirectional LSTM (BLSTM) [10], which
performs both a forward and backward pass over the data, thus
incorporating future context at the cost of offline operation.

In this paper, we explore deep feedforward, recurrent LSTM,
and BLSTM network architectures for removing lav-mic rustle
from speech, a specific problem for audio engineers that, to the
best of our knowledge, has not previously been explored in the
literature. We begin by reviewing mask estimation approaches to
single-channel source separation and different deep network archi-
tectures in Section 2. We benchmark the performance of our recur-
rent architectures against feedforward networks in terms of noise
reduction and speech intelligibility and explore trade-offs in the
spectral features used as network inputs in Section 3. Techniques
for removing lav-mic rustle while maintaining a certain amount of
background ambience to maintain the natural quality of the recor-
ding are explored in Section 4. Finally, conclusions and discussi-
ons of future work are provided in Section 5.

2. SPEECH SEPARATION NETWORKS

Our algorithm works on a mono mixture y(t) = s(t) + n(t) of
speech s(t) corrupted by lav mic rustle n(t). Given a training
set with examples of isolated speech and rustle signals, we create
mixtures with known ground truth to learn a mapping that estima-
tes the clean speech signal ŝ(t) from noisy mixture y(t). Rather
than operating on the time-domain waveform, our neural networks
take as input the short-time Fourier transform (STFT) magnitude
spectrogram of y(t), denoted as Y = [y1,y2, ...,yT ] ∈ Rd×T ,
where d is the number of frequency bins.

We use the magnitude ratio mask as the time-varying filter for
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Figure 1: Incorporating temporal context via multiple frame inputs (a) or hidden layer state propagation (b) and (c).

separating speech and rustle, which is defined as

mt =
st

st + nt
, (1)

where t is the STFT frame (time) index, st are the spectral magni-
tude coefficients of clean speech, and nt is the rustle magnitude
spectrum. The division operation in (1) is performed element-
wise. Because magnitude spectra st and nt are nonnegative, the
mask elements mt from (1) are in the interval [0, 1]. The output
of our neural network is m̂t, which we use to obtain estimated
magnitude spectra for separated speech and rustle, i.e.,

ŝt = m̂t � yt, (2)
n̂t = (1− m̂t)� yt, (3)

where � represents an element-wise product. We use (2) and
(3) to obtain the estimated time-domain waveforms ŝ(t) and ŷ(t)
through the inverse STFT, with phase information taken from the
noisy mixture y(t).

2.1. Network architectures

We estimate m̂t using a feedforward neural network architecture
as follows:

m̂t = σ(WLhL−1
t + bL), (4)

h`
t = ReLU(W`h`−1

t + b`), ` = 2, ..., L− 1, (5)

h1
t = ReLU(W1yc

t + b1), (6)

where L represents the number of layers, σ(·) the sigmoid nonli-
nearity, and ReLU(·) the rectified linear unit activation function.
The weight and bias parameters of layer `, whose values are le-
arned during training, are denoted by W` and b`. The input to
the feedforward architecture is yc

t = [yt−c, ...,yt, ...,yt+c]
T ∈

Rd(2c+1), which incorporates temporal context by stacking a small
number of frames to use as the network input.

We can alternatively incorporate temporal context using a re-
current network architecture for estimating m̂t as

m̂t = σ(WLhL−1
t + bL), (7)

h`
t = f(h`−1

t , h`
t−1), ` = 2, ..., L− 1, (8)

h1
t = f(yt, h

1
t−1), (9)

where f(·) represents the nonlinear mapping function of a recur-
rent layer, and the state of each recurrent hidden layer, i.e., h`

t for
layer ` is stored and used as an additional input at the next time
step. We use LSTM-style [8] recurrent layers for f(·), which were
successfully used for speech denoising in [9, 11]. The input to the
network, yt in (9), is only a single spectrogram frame.

We can further incorporate temporal context into a source se-
paration architecture by using bidirectional LSTM (BLSTM) ar-
chictures [10]. BLSTM networks require offline operation, and
we can define a BLSTM layer as

h̃`
t = f(h`−1

t , ~h`
t−1) + f(h`−1

t , ~h`
t+1), (10)

where ~h`
t−1 and ~h`

t−1 are outputs of the forward and backward
recurrent layers, respectively. The backward layer ~h`

t−1 consumes
the input spectrogram in time-reversed order. Figure 1 illustra-
tes how temporal context is incorporated in feedforward, recurrent
(LSTM), and bidirectional recurrent (BLSTM) layers.

2.2. Training objective

Given a training set of isolated speech and isolated rustle noise
spectrograms, we can create mixtures with known ground truth for
learning the nonlinear mapping between noisy speech spectra yt

and estimated ratio mask m̂t. Several studies on neural network
based speech separation [2, 3, 11] have shown the utility of using
the error in the estimated spectrum ŝt (as opposed to the error in
the estimated mask m̂t) as the network training objective. This
leads to the so-called signal approximation mean squared error ob-
jective function

JMSE =
1

T

T∑
t=1

||ŝt − st||22. (11)

But using this objective can sometimes cause the network to be too
conservative in situations where noise is quieter than speech, yet
still perceptible. An alternative objective proposed in [2] is

JDIS =
1

T

T∑
t=1

(
||ŝt − st||22 + ||n̂t − nt||22−

γ||st − n̂t||22 − γ||nt − ŝt||22
)
, (12)
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where the parameter γ provides a trade-off between interference
(i.e., rustle remaining in the separated speech) and artifacts caused
by the source separation process. We found setting γ = 10−3 to
work well for removing rustle from speech, and we use that value
and the objective function from (12) in all experiments described
in Section 3. The objective function in (12) is minimized using
backpropagation and stochastic gradient descent.

3. EXPERIMENTS

3.1. Dataset description

To create a training set for rustle noise removal, we needed to
collect a large amount of clean speech and isolated rustle data.
While several publicly available datasets for speech research offer
only low sampling rate data (less than 40 kHz), we have used the
pitch tracking corpus from [12], the reverberant speech from the
Chime challenge [13], the processed speech from the DAPS expe-
riment [14], and the TSP speech dataset [15]. All of these datasets
provide audio at sampling rates of 44.1 or 48 kHz. We have also
supplemented our clean speech training data with several hours of
audio recorded for iZotope tutorial videos. While no publicly avai-
lable datasets of isolated rustle exist, we were able to use sound
effects from www.prosoundeffects.com that shared sonic qualities
with lav mic rustle. However, these sound effects alone were in-
sufficient to cover the wide range of lav mic rustle disturbances we
wanted our algorithm to remove. We thus collected approximately
one hour of isolated lav mic rustle noise, varying microphone type,
clothing, movement, and recording environment. All of the audio
processed in these experiments had a sampling rate of 48 kHz.

While most rustle disturbances are rather quiet relative to
speech (i.e., SNR � 0), we also wanted our algorithm to be ro-
bust to low-SNR situations, such as lav mics mounted on athletes
during competition or while outdoors in extreme weather events.
Thus, using these isolated speech and rustle noise datasets, we cre-
ated mixtures with SNR ranging from−6 to +9 dB (SNR has been
measured over periods with active rustle). To limit the computa-
tional resources necessary for training, all mixtures were limited
to 10 seconds in length, and these mixtures sometimes consis-
ted of multiple speech utterances and/or rustle noise concatenated
together prior to forming the mixture.

While we can qualitatively test the performance of our algo-
rithm using actual rustle-corrupted speech, to quantitatively evalu-
ate performance using the metrics described in Section 3.2 requires
mixtures with ground truth (i.e., the isolated speech and rustle used
to create the mixture) available. This testing dataset is composed
of speech from speakers not used to train the algorithm, as well
as held out rustle noises that were distinct from those used during
training. All testing set mixtures were 12 seconds in length and
the SNR varied over the same −6 to +9 dB range.

3.2. Performance metrics

We quantitatively evaluate the performance of our algorithm in
terms of separation performance and intelligibility. For separation
performance, we use the SNR of the separated speech, typically
referred to as source to distortion ratio (SDR) in the source se-
paration literature [16]. For speech quality and intelligibility, we
use the short-term objective intelligibility (STOI) metric proposed
in [17]. The STOI algorithm returns a value in [0, 1] range, with 1
representing the highest quality. However, we evaluate our rustle

removal in terms of ∆STOI, which we define as the difference
between the STOI score of the separated speech and that of the
original noisy mixture, converted to a percentage.

3.3. Analysis of results

In this section we compare performance of our rustle removal al-
gorithm for different network structures and their associated tem-
poral context, as shown in Figure 1. Additionally, we investigate
the impact of spectral resolution (i.e., the FFT size) used to create
the spectrograms input and output by the network. All experi-
ments use the Adadelta [18] optimizer and are trained for 20,000
mini-batches of 16 sequences each. Each sequence consists of 10
seconds of clean speech randomly mixed with segments of mic
rustle.

Besides comparing objective measures, we have also perfor-
med informal listening tests with real-world speech signals having
diverse SNR. They have shown a significant reduction in audibility
of rustle. Some audio examples are available for download at
http://www.izotope.com/tech/aes_rustle

3.3.1. FFT size

To determine an upper bound on source separation performance,
we can use the so-called “oracle mask” which is the magnitude
ratio mask computed using the ground truth isolated speech and
rustle noise spectrograms. Figures 2(a) and (b) display the SDR
and ∆ STOI for FFT sizes of 1024, 2048, and 4096 (at 48 kHz
sampling rate) as a function of input SNR. For all FFT sizes we
used 4× overlap and Hann windows. From Figure 2 we see that
the FFT size of 4096 performs best in terms of SDR, but worst in
terms of STOI.

Figure 3 repeats the same FFT size comparison, but this time
evaluates testing set performance of a trained two-layer BLSTM
network with 256 hidden units per layer. The SDR from Fi-
gure 3(a) exhibits the opposite trend with respect to increasing
FFT size when compared to the oracle results from Figure 2(a),
with 4096-point FFT leading to the lowest level performance. This
discrepancy might be caused by the curse of dimensionality, as lar-
ger FFT sizes require more network parameters in the input and
output layers. In terms of STOI performance for the trained BL-
STM network shown in Figure 3(b), an FFT size of 2048 exhibits
the best performance, while FFT sizes of 1024 and 4096 perform
similarly, although the larger FTT size (4096) does show impro-
vements at SNR of −6 dB. In terms of both the SDR and STOI
results from Figures 2 and 3, the FFT size of 2048 appears to con-
sistently demonstrate strong performance for both the oracle and
trained BLSTM network.

3.3.2. Network structure

In this section we evaluate the feedforward, recurrent (LSTM), and
bidirectional (BLSTM) architectures shown in Figure 1. All three
architectures were designed to have a nearly equivalent number of
parameters as shown in Table 1. For the feedforward architecture
we used a context size of c = 2 frames, meaning that our network
input is the concatenation of five frames. Because a single BLSTM
layer has independent forward and backward layers, its complexity
is comparable to a forward-only LSTM with four hidden layers.

Figures 4(a) and (b) display the SDR and STOI for the three
different network architectures. The LSTM and BLSTM perform
similarly in terms of SDR and much better than the feedforward
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Figure 2: Metrics of separated speech using the oracle (ground truth) ratio mask for different FFT sizes at different input SNR levels.
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Figure 3: Metrics of speech separated using BLSTM network for different FFT sizes at different input SNR levels.

Input Hid. 1 Hid. 2 Hid. 3 Hid. 4 Output
Feedforward 5125 512 512 512 512 1025

LSTM 1025 256 256 256 256 1025
BLSTM 1025 256 256 N/A N/A 1025

Table 1: Layer sizes for different network configurations using 2048-point FFT. Sizes were chosen such that all architectures had approxi-
mately the same number of parameters.
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Figure 4: Metrics of separated speech comparing different network structures with FFT size of 2048 at different input SNR levels.

(“dense”) architecture, as shown in Figure 4(a). We can also in-
terpret this result in terms of the amount of temporal context the
network has available. Since the LSTM and BLSTM perform si-
milarly, this could mean that future context is less important in
terms of SDR. The recurrent architectures, however, exploit signi-
ficantly more context than the feedforward architecture has avai-
lable. In terms of the STOI shown in Figure 4(b), the BLSTM
architecture performs best and the forward-only LSTM performs
worst, demonstrating the importance of future context for intelli-
gibility. Although the BLSTM architecture exhibits strong perfor-
mance, it requires offline access for the backward pass over the
data. A low-latency implementation becomes possible if BLSTM
works on blocks of the audio signal or if a lookahead layer [19] is
added to the forward-only LSTM architecture.

4. AMBIENCE PRESERVATION

The speech separation network trained on clean speech mixed
with mic rustle seeks to optimally recover clean speech. In many
real-life scenarios, input speech is corrupted with both mic rus-
tle and some stationary (or quasi-stationary) noise (Figure 5(a)).
In such cases our net trained for speech isolation produces ex-
cessive gating, i.e., attenuates stationary noise between sentences
(Figure 5(b)). This can cause the separated speech to sound un-
natural or overly processed, which was confirmed by our informal
listening tests. The algorithm proposed in this section mitigates
the problem by estimating the stationary noise floor and limiting
the amount of spectral attenuation m̂t to ensure that the resulting
signal ŝt does not have excessive gating (Figure 5(c)).

Because the algorithm adapts to the noise floor, it can be used
for signals with low or high SNR. Its application is optional and
often makes sense in the context of post-production, where preser-
vation of the stationary noise floor (“room tone”) is desirable.

4.1. Noise estimation

A simple adaptation algorithm is used to detect the quasi-stationary
noise floor in speech. It operates on a magnitude spectrogram yt

of the input signal and computes magnitude estimates of the noise

floor n̂t by applying a series of three filters: a Hann filter H , a sli-
ding minimum filter M , and an asymmetric 1st order attack/decay
filter E [20].

n̂t = E(M(H(yt))) (13)

The filters are independently applied to each frequency bin of
the spectrogram along the time axis. The purpose of filter E is to
quickly react to decays in the signal energy and slowly react to on-
sets of the signal energy. Its upward integration time (attack time)
is set to 10000 ms, while its downward integration time (decay
time) is set to 100 ms. The purpose of filter M is to keep noise
floor estimates steady during speech utterances. Its window size is
set to 2000 ms. The purpose of filter H is to prevent filter M from
becoming trapped in spectrogram zeros. Its radius is set to 10 ms.

4.2. Limiting of attenuation

Gating is created when the resulting signal energy ŝt = m̂t � yt

falls below the noise floor n̂t. To prevent this, we are limiting the
spectral mask m̂t as follows:

m̂+
t = min

{
1, max

{
m̂t,

n̂t

yt

}}
. (14)

Our noise floor estimate n̂t is quasi-stationary (slowly chan-
ging in time), so its distribution does not match the distribution of
a typical noise power spectrum, which is random. When a quasi-
stationary constraint (14) is applied to the mask and then to the
signal (2), parts of the output signal obtain this unnatural distri-
bution too. To improve naturalness of the distribution, we are ap-
plying a time-frequency smoothing to the mask m̂+

t using a “DFT
thresholding” algorithm from [21]. This edge-adaptive smoothing
also reduces “musical noise” artifacts resulting from processing
the STFT spectrum. The updated processing formulas with smoo-
thing of the mask are as follows:

m̂++
t = Smooth

(
m̂+

t

)
, (15)

ŝt = m̂++
t � yt. (16)
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(a) Speech with rustle (b) De-rustle, formula (2) (c) De-rustle, formula (16)

Figure 5: Comparison of rustle attenuation without (b) and with (c) ambience preservation. Additional audio examples are available at
http://www.izotope.com/tech/aes_rustle

5. CONCLUSIONS AND FUTURE WORK

In this paper we have described an approach for lavalier microp-
hone rustle removal using deep neural networks, while maintaining
natural sounding audio quality by supplementing the network out-
put with spectral smoothing and stationary noise floor estimation.
We also found a spectral resolution of around 20 Hz (FFT size of
2048 at 48 kHz) and bidirectional recurrent network architectures
to provide the best performance for this specific speech separation
application.

Bidirectional recurrent architectures (e.g., BLSTM) exhibited
the overall best performance, but investigating low-latency bidi-
rectional approximations for rustle removal is an important area
for additional study. Exploring complex ratio masks [6] or time-
domain Wavenet architectures [22] are other potentially interesting
areas of future work.
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